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Abstract: A topological descriptors is a numerical quantity associated with the
chemical structures which play an essential role in the chemical graph theory. In
this work, we state and prove the expected values of the degree- based topological
indices and generalized ISI(α,β) index for the random l-polygonal chain and random
l-polygonal spiro chain. Based on the results above, we present the average values
of the TIs with respect to the set of all polygonal and spiro polygonal chains
with n polygons. As applications, we apply the affiliated formulae to obtain the
expected values of the TIs of some special polygonal chains and spiro polygonal
chains. Furthermore, we present diverse representations of graph that highlights
the correlations between expected mean of indices and structural parameters.
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1. Introduction
Chemical graph theory [32] is an essential branch of mathematics and theoretical

chemistry which model graphs mathematically. A topological index or molecular
descriptor [14, 25, 31] correlate each molecular structure with a numerical value. It
helps to predict different kind of physico-chemical properties and biological activity
associated with the structure of the compounds. These indices are extensively used
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in the QSPR and QSAR studies, pharmaceutical drug designing, isomer discrim-
ination etc. The topological indices of Random molecular graphs are very much
important in theoretical chemistry. The study of random arrangement of topolog-
ical indices has received an ample amount of attention of researchers from various
fields of Mathematical and Chemical Sciences [6, 11, 15, 26, 33].

A polygonal chain of n cycles (polygons) is obtained from a sequence of polygons
O1, O2, ..., On, by adjoining a cut edge to each pair of consecutive cycles. This
polygonal chain is an l-polygonal chain (of length n) if all the cycles are l-cycles
and is denoted as PCn. The Oi cycle is called the ith -polygon of PCn, 1 ≤ i ≤ n.
For n = 1, 2, the polygonal chains are unique as shown in Figure 1 [38]. But PCn is
not unique when n ≥ 3. Let On−1 = x1x2...xlx1 in PCn−1 for n ≥ 3. There is a cut
edge connecting x1 and vn−2 which is a vertex in On−2. Let PCi

n be obtained by
local adjustment of the l- polygonal chains (see Figure 2 ) [38], where 1 ≤ i ≤ m.
Let m = ⌊ l

2
⌋. By symmetry, there are m ways to adjoin a cut edge between the

(n− 1)th cycle On−1 of PCn−1 to the terminal l- cycle On [38].

Figure 1: The polygonal chains for n = 1 and n = 2.

Figure 2: k types of local arrangements in an l−polygonal chain

Similarly, a l-polygonal spiro chain of length n , denoted by SPCn, can be
obtained from a l-polygonal chain PCn by contracting each cut edge between each
pair of l-cycles in PCn. Figure 3 [20] shows the unique l-polygonal spiro chains
for n = 1, 2. SPCn is also not unique when n ≥ 3 and has m types of local
arrangements which are denoted as SPCi

n, where 1 ≤ i ≤ m (see Figure 4) [20].
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Therefore, PCi
n can be attained by stepwise addition of a terminal l-polygonal

chain to PCn−1 and also SPCi
n can be attained by stepwise addition of a terminal

l-polygonal spiro chain to SPCn−1 which are random in nature with probability
pi and

∑m
i=1 pi = 1. We also assume that the probabilities p1, p2, ..., pm, are con-

stants and independent of n, that is, the process described is a zeroth-order Markov
process. After associating probabilities, such an l-polygonal chain is called a ran-
dom l-polygonal chain and denoted by PC(n; p1, p2, ..., pm). Also, l-polygonal spiro
chain known as random l-polygonal spiro chain, denoted by SPC(n; p1, p2, ..., pm).

Figure 3: The polygonal spiro chains for n = 1 and n = 2.

Figure 4: k types of local arrangements in an l−polygonal spiro chain

Brunvoll et al. [2] expressed the number of isomers in tree-like octagonal graphs.
Wang et al. [34] obtained the Wiener indices of random pentagonal chains (i.e.,
5-polygonal chains) in 2013. Recently, Wei et al. [37] obtained simple formulae
for the expected values of the Wiener indices of random generalized polyomino
chain graphs (i.e., 4-polygonal chains) and random cyclooctane chain graphs (i.e.,
8-polygonal chains). For more detailed survey on the chemical applications and
the mathematical literature of the indices of random chains, see [1, 8, 16, 19, 21,
23, 27-29, 41] and the references cited therein.
In recent year, random arrangement of various kind of polygonal chains and polyg-
onal spiro chains attracted many researchers in the field of mathematical physics,
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statistics, environmental chemistry etc [1, 18, 24, 35, 40, 45]. Polyomino system is a
polycyclic hydrocarbons extensively studied in organic chemistry. The compounds
like polyphenylenes, cyclooctanes are a kind of unbranched saturated hydrocarbons
and their derivatives attracted many chemists and researchers for many years due
to their excellent properties. They are used in synthesis of drug, exchange of heat,
synthesis of organic chemicals and petrochemicals, combustion kinetics etc.

In this paper, we consider the general form of degree - based topological indices
which is :

TI(G) =
∑

uiuj∈E(G)

f(di, dj) (1.1)

where, f is a real valued function, ui is the vertex of the graph G, di is the degree
of the vertex ui.
There are legion of topological indices in the literature. In 2020, Buragohain et al.
[3] proposed a generalized topological index which is defined as

ISI(α,β)(G) =
∑

uiuj∈E(G)

(didj)
α(di + dj)

β.

Most of the molecular descriptors are the special cases of this generalized index.
Table 1 shows the connection of ISI(α,β) - index with the molecular descriptors by
assigning values to the parameters α and β. For more details of the index, refer to
[9, 10, 12, 13, 25, 30, 39, 42-44].

Topological index Corresponding ISI(α,β)- index

First Zagreb index, M1(G) ISI(0,1)(G)
Second Zagreb index, M2(G) ISI(1,0)(G)
Second modified Zagreb index, M̄2(G) ISI(−1,0)(G)
Redefined third Zagreb index, ReZG3(G) ISI(1,1)(G)
Inverse sum indeg index, ISI(G) ISI(1,−1)(G)
Harmonic index, H(G) 2ISI(0,−1)(G)
Hyper-Zagreb index, HM(G) ISI(0,2)(G)
Randić index, R(G) ISI(− 1

2
,0)(G)

Sum connectivity index, SCI(G) ISI(0,− 1
2
)(G)

Geometric- Arithmetic Mean index, GA(G) 2ISI( 1
2
,−1)(G)

First Generalized Randić index, Rα(G) ISI(α,0)(G)
General sum - connectivity index, χα(G) ISI(0,α)(G)

Table 1: Relation of ISI(α,β)- index with other molecular descriptors
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2. Some Preliminaries
Let G be graph and (i, j) - edge denote the edge connecting a vertex of degree

i and j in G. Let xij(G) denote the number of (i, j) -edges in the graph G.

2.1. Random polygonal chain
The m = ⌊ l

2
⌋ local arrangements of the l - polygonal chains with probability pk is

denoted by PCk
n. From the structure of the chain PCn , one can see that there are

(2, 2), (2, 3) and (3, 3) types of edges only.
We define

γ
(k)
(i,j) = xij(PCk

n)− xij(PCn−1),

where 1 ≤ k ≤ m. For n ≥ 3, there are m probable structures of l- polygonal chain
of length n which is constructed as

PCn−1 → PCk
n

with probability pk, where pk are steady and independent of the parameter k and∑m
k=1 pk = 1. Then,

For k = 1,

γ
(1)
(2,2) = x22(PC1

n)− x22(PCn−1) = l − 3,

γ
(1)
(2,3) = x23(PC1

n)− x23(PCn−1) = 2,

γ
(1)
(3,3) = x33(PC1

n)− x33(PCn−1) = 2.

For 2 ≤ k ≤ ⌊ l
2
⌋,

γ
(k)
(2,2) = x22(PCk

n)− x22(PCn−1) = l − 4,

γ
(k)
(2,3) = x23(PCk

n)− x23(PCn−1) = 4,

γ
(k)
(3,3) = x33(PCk

n)− x33(PCn−1) = 1.

We also define

γ =
m∑
k=1

∑
(i,j)∈E(G)

pk γ
(k)
(i,j) f(di, dj), i ≤ j. (2.1)

2.2. Random l -polygonal spiro chain
The m = ⌊ l

2
⌋ local arrangements of the l- polygonal spiro chains with probability

pk is denoted by SPCk
n. From the structure of the chain SPCn , one can see that
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there are only (2, 2), (2, 4) and (4, 4) types of edges.
We define

δ
(k)
(i,j) = xij(SPCk

n)− xij(SPCn−1),

where 1 ≤ k ≤ m. For n ≥ 3, there are m probable structures of l- polygonal spiro
chain of length n which is constructed as

SPCn−1 → SPCk
n

with probability pk, where pk are steady and independent of the parameter k and∑m
k=1 pk = 1. Then,

For k = 1,

δ
(1)
(2,2) = x22(SPC1

n)− x22(SPCn−1) = l − 3,

δ
(1)
(2,4) = x24(SPC1

n)− x24(SPCn−1) = 2,

δ
(1)
(4,4) = x44(SPC1

n)− x44(SPCn−1) = 1.

For 2 ≤ k ≤ ⌊ l
2
⌋,

δ
(k)
(2,2) = x22(SPCk

n)− x22(SPCn−1) = l − 4,

δ
(k)
(2,4) = x24(SPCk

n)− x24(SPCn−1) = 4,

δ
(k)
(4,4) = x44(SPCk

n)− x44(SPCn−1) = 0.

We also define

δ =
m∑
k=1

∑
(i,j)∈E(G)

pk δ
(k)
(i,j) f(di, dj), i ≤ j. (2.2)

3. Main Results

In this section, we state and prove the explicit formulas of expected mean of
random l- polygonal chain and random l- polygonal spiro chain alongwith their
generalized ISI index.

3.1. Random l- polygonal chain
Notice that PCn is a random l- polygonal chain due to its local arrangements and
TI(PC(n; p1, p2, ..., pm)) is the random variable. Denote the expected value of the
topological descriptors as ETI

n = E[TI(PC(n; p1, p2, ..., pm))].
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Theorem 3.1. Let n ≥ 2 and l ≥ 4, and a random l- polygonal chain PC(n; p1,
p2, ..., pm) of length n. Then

ETI
n = ETI

2 + γ(n− 2),

where

ETI
2 =

∑
(i,j)∈E(G)

f(di, dj) xij(PC2), i ≤ j.

Proof. For n ≥ 3, there are m = ⌊ l
2
⌋ types of probabilities (see Figure 2) [38].

Therefore, we have

ETI
n =p1 TI(PC1

n) + p2 TI(PC2
n) + ...+ pm TI(PCm

n )

=p1 (TI(PCn−1 + (l − 3)f(d2, d2) + 2f(d2, d3) + 2f(d3, d3))

+ p2 (TI(PCn−1 + (l − 4)f(d2, d2) + 4f(d2, d3) + 1f(d3, d3)) + ...

+ pm (TI(PCn−1 + (l − 4)f(d2, d2) + 4f(d2, d3) + 1f(d3, d3))

=p1 (TI(PCn−1) +
∑

(i,j)∈E(G)

γ
(1)
(i,j) f(di, dj)) + p2 (TI(PCn−1)

+
∑

(i,j)∈E(G)

γ
(2)
(i,j) f(di, dj)) + ...+ pm (TI(PCn−1) +

∑
(i,j)∈E(G)

γ
(m)
(i,j) f(di, dj))

=
m∑
k=1

pk (TI(PCn−1) +
∑

(i,j)∈E(G)

γk
(i,j) f(di, dj))

=TI(PCn−1) +
m∑
k=1

∑
(i,j)∈E(G)

pkγ
k
(i,j) f(di, dj) (3.1)

However, E[ETI
n ] = ETI

n , Eq. (3.1) gives

ETI
n =ETI

n−1 +
m∑
k=1

∑
(i,j)∈E(G)

pk γ
(k)
(i,j) f(di, dj)

ETI
n =ETI

n−1 + γ, n > 2 [From Eq.(2.1)]

Using recurrence relation and using initial conditions, we get

ETI
n = ETI

2 + γ (n− 2).

Hence, proved.
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Theorem 3.2. Let n ≥ 2 and l ≥ 4, and a random l- polygonal chain PC(n; p1,
p2, ..., pm) of length n. Then

E
ISI(α,β)
n =n[(l − 4).4α+β + 4.6α.5β + 32α+β.2β) + p1(4

α+β − 2.6α.5β + 32α+β.2β)]

−2p1(4
α+β − 2.6α.5β + 32α+β.2β) + (4α+β+1 − 4.6α.5β − 32α+β.2β).

Proof. For n = 2,

x22(PC2) = 2l − 4, x23(PC2) = 4, x33(PC2) = 1.

E
ISI(α,β)

2 = (2l − 4).4α+β + 4.6α.5β + 9α.6β.

For n ≥ 3,

γ =p1[(l − 3).4α.4β + 2.6α.5β + 2.9α.6β] + p2[(l − 4).4α.4β + 4.6α.5β + 1.9α.6β]

+ ...+ pm[(l − 4).4α.4β + 4.6α.5β + 1.9α.6β]

=((l − 4).4α+β + 4.6α.5β + 9α.6β) + p1(4
α+β − 2.6α.5β + 9α.6β).

Therefore,

E
ISI(α,β)
n =(2l − 4).4α+β + 4.6α.5β + 9α.6β + [(l − 4).4α+β + 4.6α.5β + 9α.6β)

+p1(4
α+β − 2.6α.5β + 9α.6β)(n− 2)

=n[(l − 4).4α+β + 4.6α.5β + 32α+β.2β) + p1(4
α+β − 2.6α.5β + 32α+β.2β)]

−2p1(4
α+β − 2.6α.5β + 32α+β.2β) + (4α+β+1 − 4.6α.5β − 32α+β.2β).

3.2. Random l- polygonal spiro chain
Notice that SPCn is a random l- polygonal spiro chain due to its local arrange-

ments and TI(SPC(n; p1, p2, ..., pm)) is the random variable. Denote the expected
value of the topological descriptors as ETI

n = E[TI(SPC(n; p1, p2, ..., pm))].

Theorem 3.3. Let n ≥ 2 and l ≥ 4 a random l- polygonal spiro chain SPC(n; p1,
p2, ..., pm) of length n. Then

ETI
n = ETI

2 + δ(n− 2),

where

ETI
2 =

∑
(i,j)∈E(G)

f(di, dj) xij(SPC2), i ≤ j.
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Proof. For n ≥ 3, there are m = ⌊ l
2
⌋ possible constructions (see Figure 4) [20].

Therefore, we have

ETI
n =p1 TI(RPC1

n) + p2 TI(RPC2
n) + p3 TI(RPC3

n)

=p1 (TI(RPCn−1) +
∑

(i,j)∈E(G)

δ
(1)
(i,j) f(di, dj)) + p2 (TI(RPCn−1)

+
∑

(i,j)∈E(G)

δ
(2)
(i,j) f(di, dj)) + p3 (TI(RPCn−1) +

∑
(i,j)∈E(G)

γ
(3)
(i,j) f(di, dj))

=
3∑

k=1

pk (TI(RPCn−1) +
∑

(i,j)∈E(G)

δk(i,j) f(di, dj))

= TI(RPCn−1) +
3∑

k=1

∑
(i,j)∈E(G)

pkδ
k
(i,j) f(di, dj) (3.2)

However, E[ETI
n ] = ETI

n , Eq. (3.2) gives

ETI
n =ETI

n−1 +
3∑

k=1

∑
(i,j)∈E(G)

pk δk(i,j) f(di, dj)

En
TI =En−1

TI + δ, n > 2 [From Eq.(2.2)]

Using recurrence relation and using initial conditions, we get

En
TI = E2

TI + δ (n− 2).

Hence, proved.

Theorem 3.4. Let n ≥ 2 and l ≥ 4, and a random l- polygonal spiro chain
SPC(n; p1, p2, ..., pm) of length n. Then

E
ISI(α,β)
n =n[((l − 4).4α+β + 4.8α.6β + p1(4

α+β − 2.8α.6β + 16α.8β)]

−2p1(4
α+β − 2.8α.6β + 16α.8β) + (4α+β+1 − 4.8α.6β).

Proof. For n = 2,

x22(SPC2) = 2l − 4, x24(SPC2) = 4, x44(SPC2) = 0.

E
ISI(α,β)

2 = (2l − 4).4α+β + 4.8α.6β.
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For n ≥ 3,

δ =p1[(l − 3).4α.4β + 2.8α.6β + 1.16α.8β] + p2[(l − 4).4α.4β + 4.8α.6β + 0.16α.8β]

+ ...+ pm[(l − 4).4α.4β + 4.8α.6β + 0.16α.8β]

=(l − 4).4α+β + 4.8α.6β + p1(4
α+β − 2.8α.6β + 1.16α.8β).

Therefore,

E
ISI(α,β)
n =((2l − 4).4α+β + 4.8α.6β) + [((l − 4).4α+β + 4.8α.6β)

+ p1(4
α+β − 2.8α.6β + 16α.8β)](n− 2)

=n[((l − 4).4α+β + 4.8α.6β + p1(4
α+β − 2.8α.6β + 16α.8β)]

− 2p1(4
α+β − 2.8α.6β + 16α.8β) + (4α+β+1 − 4.8α.6β).

4. Some special results based on the derived results
In this section, we present the average values of the molecular descriptors with

respect to the set of all l- polygonal chains and set of all l- polygonal spiro chains
with n polygons. Also, we give attention to the special l- polygonal chains and l-
polygonal spiro chains.
Let PCn and SPCn be the sets of all l- polygonal chains and all l- polygonal spiro
chains with n polygons. The average values of the TIs of PCn and SPCn are defined
by

TIavg(PCn) =
1

|PCn|
∑

G∈PCn

TI(G)

and

TIavg(SPCn) =
1

|SPCn|
∑

G∈SPCn

TI(G),

respectively. In fact, average value is the population mean of the topological indices
of all elements in PCn and also in SPCn. Since every element occurring in PCn and
SPCn has the same probability, we have p1 = p2 = ... = pm, where m = ⌊ l

2
⌋. Thus,

we can apply Theorem 3.1 and 3.3 by putting p1 = p2 = ... = pm = 1
m

and obtain
the following results.

Theorem 4.1. The average value of the TIs with respect to PCn is

TIavg(PCn) = ETI
2 + (n− 2).

1

m
[(ml − 4m+ 1)f(d2, d2) + (4m− 2)f(d2, d3)

+ (m+ 1)f(d3, d3)].
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Proof. By substituting pk =
1
m

for 1 ≤ k ≤ m in Eq.(2.1), we have

γ =
1

m

m∑
k=1

∑
(i,j)∈E(G)

i≤j

γ
(k)
(i,j) f(di, dj)

=
1

m
[(l − 3)f(d2, d2) + 2f(d2, d3) + 2f(d3, d3) + (l − 4)f(d2, d2)

+ 4f(d2, d3) + 1f(d3, d3) + ...]

=
1

m
[f(d2, d2){(l − 3) + (m− 1)(l − 4)}+ f(d2, d3){2 + (m− 1)4}

+ f(d3, d3){2 + (m− 1)}]

=
1

m
[(ml − 4m+ 1)f(d2, d2) + (4m− 2)f(d2, d3) + (m+ 1)f(d3, d3)]

From Theorem 3.1,

TIavg(PCn) =E[TI(PC(n;
1

m
,
1

m
, ...,

1

m
))]

=ETI
2 + (n− 2).

1

m
[(ml − 4m+ 1)f(d2, d2)

+ (4m− 2)f(d2, d3) + (m+ 1)f(d3, d3)].

Theorem 4.2. The average value of the TIs with respect to SPCn is

TIavg(SPCn) = ETI
2 + (n− 2).

1

m
[(ml − 4m+ 1)f(d2, d2) + (4m− 2)f(d2, d4) + f(d4, d4)].

Proof. The theorem is obtained by substituting pk =
1
m

for 1 ≤ k ≤ m in Eq.(2.2)
and using Theorem 3.3.

Now, we turn our attention to the m special l- polygonal chains and l- polygo-
nal spiro chains when setting pk = 1 and pq = 0 where 1 ≤ q ≤ m and q ̸= k.

Corollary 4.1. For n ≥ 2, we have the following:
1.T I(PC(n; 1, 0, 0, ..., 0)) = ETI

2 + (n− 2)[
∑

(i,j)∈E(G)
i≤j

γ
(1)
(i,j) f(di, dj)].

2.T I(SPC(n; 1, 0, 0, ..., 0)) = ETI
2 + (n− 2)[

∑
(i,j)∈E(G)

i≤j

δ
(1)
(i,j) f(di, dj)].

Fix p1 = 0, and setting as above for all (m− 1) cases, we have

3.T I(PC(n; 0, 1, 0, ..., 0)) = ETI
2 + (n− 2)[

∑
(i,j)∈E(G)

i≤j

γ
(k)
(i,j) f(di, dj)].

4.T I(SPC(n; 0, 1, 0, ..., 0)) = ETI
2 + (n− 2)[

∑
(i,j)∈E(G)

i≤j

δ
(k)
(i,j) f(di, dj)].
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5. Applications

In Section 3, we have provided some derivation for the expected values of
the molecular descriptors alongwith the generalized ISI(α,β) index in a random
l-polygonal chain and random l-polygonal spiro chain. In this section, we apply
them to obtain the expected values of the topological indices of some class of
random polygonal chains and random polygonal spiro chains such as the random
4-polygonal, random 5-polygonal, random 6-polygonal, random 8-polygonal chain
and its spiro chain which were highly correlated with the mathematical physics,
organic chemistry, pharmaceutical sciences etc.

The random 4-polygonal chain PC(n; p1, 1− p1) of length n is a random gener-
alized polyomino chain with n square cells each joined by an edge and is denoted
by GPCn(p1). The random 4-polygonal spiro chain SPC(n; p1, 1− p1) of length n
is a random generalized polyomino spiro chain with n square cells obtained from
GPCn(p1) by contracting each cut edge between each square cells and is denoted
by SGPCn(p1). At the present time, these graphs have attracted many researchers
from various fields. Polyomino systems is a polycyclic aromatic compounds widely
studied in organic chemistry. Some recent works on the polyomino chains includes
[5, 17, 22] rook polynomial, extremal problems, perfect matchings etc. According
to the definition of random l-polygonal and random l-polygonal spiro chain, there
are two probable local arrangements in GPCn(p1) and SGPCn(p1).

Corollary 5.1. Take l = 4 and m = ⌊4
2
⌋ = 2 in Eq.(2.1) and using Theorem 3.1,

we get the expected value of the TIs of GPCn(p1).

Corollary 5.2. Take l = 4 and using Theorem 3.2, we get the expected value of
generalized ISI(α,β) index of GPCn(p1).

Corollary 5.3. Take l = 4 and m = ⌊4
2
⌋ = 2 in Eq.(2.2) and using Theorem 3.3,

we get the expected value of the TIs of SGPCn(p1).

Corollary 5.4. Take l = 4 and using Theorem 3.4, we get the expected value of
generalized ISI(α,β) index of SGPCn(p1).

The random 5-polygonal chain PC(n; p1, 1 − p1) of length n is a random pen-
tagonal chain with n pentagons connected with an edge and is denoted by Pα

n (p1).
The random 5-polygonal spiro chain SPC(n; p1, 1 − p1) of length n is a random
pentagonal spiro chain with n pentagons obtained from Pα

n (p1) by contracting each
cut edge between each pentagons and is denoted by SPα

n (p1). According to the
definition of random l-polygonal and random l-polygonal spiro chain, there are two
probable local arrangements in Pα

n (p1) and SPα
n (p1) [34].

Corollary 5.5. Take l = 5 and m = ⌊5
2
⌋ = 2 in Eq.(2.1) and using Theorem 3.1,
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we get the expected value of the TIs of Pα
n (p1).

Corollary 5.6. Take l = 5 and using Theorem 3.2, we get the expected value of
generalized ISI(α,β) index of Pα

n (p1).

Corollary 5.7. Take l = 5 and m = ⌊5
2
⌋ = 2 in Eq.(2.2) and using Theorem 3.3,

we get the expected value of the TIs of SPα
n (p1).

Corollary 5.8. Take l = 5 and using Theorem 3.4, we get the expected value of
generalized ISI(α,β) index of SPα

n (p1).

The random 6-polygonal chain PC(n; p1, p2, 1 − p1 − p2) of length n is a ran-
dom polyphenyl chain with n hexagons connected with an edge and is denoted
by PPCn(p1, p2). The random 6-polygonal spiro chain SPC(n; p1, p2, 1− p1 − p2)
of length n is a random polyphenyl spiro chain with n hexagons obtained from
PPCn(p1, p2) by contracting each cut edge between each hexagons and is denoted
by SPPCn(p1, p2). Polyphenyl chains are a class of unbranched polycyclic aromatic
compounds, and their derivatives have attracted many chemists and researchers for
many years as they are used in drug synthesis, petrochemicals, heat exchangers etc.
For more results, interested readers can see [4, 7, 11, 36]. According to the defi-
nition of random l-polygonal and random l-polygonal spiro chain, there are three
probable local arrangements in PPCn(p1, p2) and SPPCn(p1, p2).

Corollary 5.9. Take l = 6 and m = ⌊6
2
⌋ = 3 in Eq.(2.1) and using Theorem 3.1,

we get the expected value of the TIs of PPCn(p1, p2).

Corollary 5.10. Take l = 6 and using Theorem 3.2, we get the expected value of
generalized ISI(α,β) index of PPCn(p1, p2).

Corollary 5.11. Take l = 6 and m = ⌊6
2
⌋ = 3 in Eq.(2.2) and using Theorem 3.3,

we get the expected value of the TIs of SPPCn(p1, p2).

Corollary 5.12. Take l = 6 and using Theorem 3.4, we get the expected value of
generalized ISI(α,β) index of SPPCn(p1, p2).

The random 8-polygonal chain PC(n; p1, p2, p3, 1−p1−p2−p3) of length n is a
random cyclooctane chain with n octagons connected with an edge and is denoted
by COCn(p1, p2, p3). The random 8-polygonal spiro chain SPC(n; p1, p2, p3, 1 −
p1 − p2 − p3) of length n is a random cyclooctane spiro chain with n octagons ob-
tained from COCn(p1, p2, p3) by contracting each cut edge between each octagons
and is denoted by SCOCn(p1, p2, p3). Cyclooctanes are a kind of saturated hy-
drocarbons and their derivatives are essential in drug discovery, heat exchangers,
synthesis of organic chemicals and petrochemicals etc. For more results, interested
readers can see [1, 2, 29, 37]. According to the definition of random l-polygonal
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and random l-polygonal spiro chain, there are four probable local arrangements in
COCn(p1, p2, p3) and SCOCn(p1, p2, p3).

Corollary 5.13. Take l = 8 and m = ⌊8
2
⌋ = 4 in Eq.(2.1) and using Theorem 3.1,

we get the expected value of the TIs of COCn(p1, p2, p3).

Corollary 5.14. Take l = 8 and using Theorem 3.2, we get the expected value of
generalized ISI(α,β) index of COCn(p1, p2, p3).

Corollary 5.15. Take l = 8 and m = ⌊8
2
⌋ = 4 in Eq.(2.2) and using Theorem 3.3,

we get the expected value of the TIs of SCOCn(p1, p2, p3).

Corollary 5.16. Take l = 8 and using Theorem 3.4, we get the expected value of
generalized ISI(α,β) index of SCOCn(p1, p2, p3).

The explicit formulas of expected mean are stated for random l- polygonal chain
and random l- polygonal spiro chain alongwith their generalized ISI index in Sec-
tion 3. To verify the behavior of expected mean of indices for random l- polygonal
chain such as random generalized polyomino chain, random pentachain, random
polyphenyl chain, and random cyclooctane chain, different values of n are consid-
ered with p1 = 0 and p1 = 1. It is noticed from Table 2-9 (see Appendix) that the
values of expected mean of TIs increases as the n value increases. The obtained
ETI

n are represented using graphs for the distinct values of n as shown in Figure
5-8 (see Appendix). Among all cases, it is observed that E[ReZG3] > E[HM ] >
E[M2] > E[M1] > E[ISI] > E[GA] > E[SCI] > E[R] > E[H] > E[M̄2]. In addi-
tion, we compare the logarithmic values of E[Rα] and E[χα] for different random
l− polygonal chains at n = 4 and p1 = 1 in Figure 9 (see Appendix). Notice that
E[Rα] > E[χα].

6. Conclusion

Nowadays, topological indices are extending over a large area in research field
of chemical graph theory due to its application in physico-chemical properties and
biological activities of chemical compounds. In this discussion, we derive the for-
mula to find the expected value of degree-based topological indices of random l-
polygonal chain and random l- polygonal spiro chain. Moreover, from the derived
results generalized ISI(α,β) index for random polygonal chains and spiro chains
were also obtained. Further, by assigning specific values to the parameter α and β,
expected mean for some of the existing topological indices of the random polygonal
chains and spiro chains can also be obtained as a special case. We also present the
average values and m- special cases of TIs for the polygonal and spiro polygonal
chains. We have also implemented the derived results to some polygonal chains
which have applications for the future chemical research. We also provide some
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numerical comparison and graphical representation of the expected values of the
TIs. All indices are increases with respect to the increase of graph parameters.
ReZG3 has the highest expected value and M̄2 has the lowest. These assists to pre-
dict different properties and activities of the molecular compounds. Higher value
corresponds to exaggerate stability and reacts less, while lower value reveals po-
tential reactivity sites. These topological index has important applications as they
are the foundations of chemical prediction and modeling software. Finding results
for other statistical parameters can be a challenging task for near future.
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Appendix

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 68 82 2.55 412 16.6 5.86 336 5.93 6.39 13.83
4 94 115 3.33 586 22.9 7.8 472 7.89 8.59 18.75
5 120 148 4.11 760 29.2 9.73 608 9.86 10.78 23.67
6 146 181 4.88 934 35.5 11.66 744 11.83 12.98 28.59
7 172 214 5.66 1108 41.8 13.6 880 13.79 15.18 33.51
8 198 247 6.44 1282 48.1 15.53 1016 15.76 17.37 38.43
9 224 280 7.22 1456 54.4 17.46 1152 17.73 19.57 43.35
10 250 313 8 1630 60.7 19.4 1288 19.69 21.77 48.27
11 276 346 8.77 1804 67 21.33 1424 21.66 23.97 53.19
12 302 379 9.55 1978 73.3 23.26 1560 23.62 26.16 58.11
13 328 412 10.33 2152 79.6 25.2 1696 25.59 28.36 63.03

Table 2: Numerical comparison of expected value of degree-based indices of random
generalized polyomino chain at p1 = 0 for n = 3 to 13

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 68 83 2.58 422 16.7 5.9 338 5.94 6.35 13.87
4 94 117 3.38 606 23.1 7.86 476 7.93 8.56 18.83
5 120 151 4.19 790 29.5 9.83 614 9.91 10.77 23.79
6 146 185 5 974 35.9 11.8 752 11.89 12.99 28.75
7 172 219 5.80 1158 42.3 13.76 890 13.88 15.20 33.71
8 198 253 6.61 1342 48.7 15.73 1028 15.86 17.41 38.67
9 224 287 7.41 1526 55.1 17.7 1166 17.84 19.62 43.63
10 250 321 8.22 1710 61.5 19.66 1304 19.83 21.83 48.59
11 276 355 9.02 1894 67.9 21.63 1442 21.81 24.04 53.55
12 302 389 9.83 2078 74.3 23.6 1580 23.79 26.25 58.51
13 328 423 10.63 2262 80.7 25.56 1718 25.78 28.46 63.47

Table 3: Numerical comparison of expected value of degree-based indices of random
generalized polyomino chain at p1 = 1 for n = 3 to 13
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[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 80 94 3.30 460 19.6 7.36 384 7.43 7.89 16.83
4 110 131 4.33 650 26.9 9.8 536 9.89 10.59 22.75
5 140 168 5.36 840 34.2 12.23 688 12.36 13.28 28.67
6 170 205 6.38 1030 41.5 14.66 840 14.83 15.98 34.59
7 200 242 7.41 1220 48.8 17.1 992 17.29 18.68 40.51
8 230 279 8.44 1410 56.1 19.53 1144 19.76 21.37 46.43
9 260 316 9.47 1600 63.4 21.96 1296 22.23 24.07 52.35
10 290 353 10.5 1790 70.7 24.4 1448 24.69 26.77 58.27
11 320 390 11.52 1980 78 26.83 1600 27.16 29.47 64.19
12 350 427 12.55 2170 85.3 29.26 1752 29.62 32.16 70.11
13 380 464 13.58 2360 92.6 31.7 1904 32.09 34.86 76.03

Table 4: Numerical comparison of expected value of degree-based indices of random
pentachain at p1 = 0 for n = 3 to 13

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 80 95 3.33 470 19.7 7.4 386 7.44 7.85 16.87
4 110 133 4.38 670 27.1 9.86 540 9.93 10.56 22.83
5 140 171 5.44 870 34.5 12.33 694 12.41 13.27 28.79
6 170 209 6.5 1070 41.9 14.8 848 14.89 15.99 34.75
7 200 247 7.55 1270 49.3 17.26 1002 17.38 18.70 40.71
8 230 285 8.61 1470 56.7 19.73 1156 19.86 21.41 46.67
9 260 323 9.66 1670 64.1 22.2 1310 22.34 24.12 52.63
10 290 361 10.72 1870 71.5 24.66 1464 24.83 26.83 58.59
11 320 399 11.77 2070 78.9 27.13 1618 27.31 29.54 64.55
12 350 437 12.83 2270 86.3 29.6 1772 29.79 32.25 70.51
13 380 475 13.88 2470 93.7 32.06 1926 32.28 34.96 76.47

Table 5: Numerical comparison of expected value of degree-based indices of random
generalized pentachain at p1 = 1 for n = 3 to 13

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 92 106 4.05 508 22.6 8.86 432 8.93 9.39 19.83
4 126 147 5.33 714 30.9 11.8 600 11.89 12.59 26.75
5 160 188 6.61 920 39.2 14.73 768 14.86 15.78 33.67
6 194 229 7.88 1126 47.5 17.66 936 17.83 18.98 40.59
7 228 270 9.16 1332 55.8 20.6 1104 20.79 22.18 47.51
8 262 311 10.44 1538 64.1 23.53 1272 23.76 25.37 54.43
9 296 352 11.72 1744 72.4 26.46 1440 26.73 28.57 61.35
10 330 393 13 1950 80.7 29.4 1608 29.69 31.77 68.27
11 364 434 14.27 2156 89 32.33 1776 32.66 34.97 75.19
12 398 475 15.55 2362 97.3 35.26 1944 35.62 38.16 82.11
13 432 516 16.83 2568 105.6 38.2 2112 38.59 41.36 89.03

Table 6: Numerical comparison of expected value of degree-based indices of random
polyphenyl chain at p1 = 0 for n = 3 to 13
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[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 92 107 4.08 518 22.7 8.9 434 8.94 9.35 19.87
4 126 149 5.38 734 31.1 11.86 604 11.93 12.56 26.83
5 160 191 6.69 950 39.5 14.83 774 14.91 15.77 33.79
6 194 233 8 1166 47.9 17.8 944 17.89 18.99 40.75
7 228 275 9.30 1382 56.3 20.76 1114 20.88 22.20 47.71
8 262 317 10.61 1598 64.7 23.73 1284 23.86 25.41 54.67
9 296 359 11.91 1814 73.1 26.7 1454 26.84 28.62 61.63
10 330 401 13.22 2030 81.5 29.66 1624 29.83 31.83 68.59
11 364 443 14.52 2246 89.9 32.63 1794 32.81 35.04 75.55
12 398 485 15.83 2462 98.3 35.6 1964 35.79 38.25 82.51
13 432 527 17.13 2678 106.7 38.56 2134 38.78 41.46 89.47

Table 7: Numerical comparison of expected value of degree-based indices of random
polyphenyl chain at p1 = 1 for n = 3 to 13

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 116 118 5.55 604 28.6 11.86 528 11.93 12.39 25.83
4 158 163 7.33 842 38.9 15.8 728 15.89 16.59 34.75
5 200 208 9.11 1080 49.2 19.73 928 19.86 20.78 43.67
6 242 253 10.88 1318 59.5 23.66 1128 23.83 24.98 52.59
7 284 298 12.66 1556 69.8 27.6 1328 27.79 29.18 61.51
8 326 343 14.44 1794 80.1 31.53 1528 31.76 33.37 70.43
9 368 388 16.22 2032 90.4 35.46 1728 35.73 37.57 79.35
10 410 433 18 2270 100.7 39.4 1928 39.69 41.77 88.27
11 452 478 19.77 2508 111 43.33 2128 43.66 45.97 97.19
12 494 523 21.55 2746 121.3 47.26 2328 47.62 50.16 106.11
13 536 568 23.33 2984 131.6 51.2 2528 51.59 54.36 115.03

Table 8: Numerical comparison of expected value of degree-based indices of random
cyclooctane chain at p1 = 0 for n = 3 to 13

[n] E[M1] E[M2] E[M̄2] E[ReZG3] E[ISI] E[H] E[HM] E[R] E[SCI] E[GA]

3 116 119 5.58 614 28.7 11.9 530 11.94 12.35 25.87
4 158 165 7.38 862 39.1 15.86 732 15.93 16.56 34.83
5 200 211 9.19 1110 49.5 19.83 934 19.91 20.77 43.79
6 242 257 11 1358 59.9 23.8 1136 23.89 24.99 52.75
7 284 303 12.80 1606 70.3 27.76 1338 27.88 29.20 61.71
8 326 349 14.61 1854 80.7 31.73 1540 31.86 33.41 70.67
9 368 395 16.41 2102 91.1 35.7 1742 35.84 37.62 79.63
10 410 441 18.22 2350 101.5 39.66 1944 39.83 41.83 88.59
11 452 487 20.02 2598 111.9 43.63 2146 43.81 46.04 97.55
12 494 533 21.83 2846 122.3 47.6 2348 47.79 50.25 106.51
13 536 579 23.63 3094 132.7 51.56 2550 51.78 54.46 115.47

Table 9: Numerical comparison of expected value of degree-based indices of random
cyclooctane chain at p1 = 1 for n = 3 to 13
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Figure 5: Graphical representation of expected value of degree-based TIs for ran-
dom generalized polyomino chain for (a) p1 = 0 and (b) p1 = 1.

Figure 6: Graphical representation of expected value of degree-based TIs for ran-
dom pentachain for (a) p1 = 0 and (b) p1 = 1.

Figure 7: Graphical representation of expected value of degree-based TIs for ran-
dom polyphenyl chain for (a) p1 = 0 and (b) p1 = 1.
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Figure 8: Graphical representation of expected value of degree-based TIs for ran-
dom cyclooctane chain for (a) p1 = 0 and (b) p1 = 1.

Figure 9: Plotting of E[Rα] and E[χα] for different random l− polygonal chains at
n = 4 and p1 = 1. In vertical axis, logarithmic values of expected mean of indices
are considered to show the comparison clearly.
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